

CASE STUDIES HIGH THROUGHPUT SCREENING

6605 Nancy Ridge Drive, San Diego, CA 92121 Tel.: 858-794-4860, Fax: 858-794-4931 E-mail: chemdiv@chemdiv.com

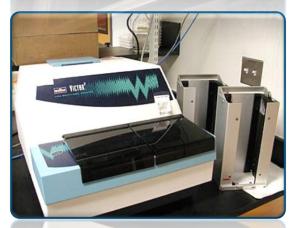
SCREENING PLATFORMS IN CHEMDIV

- Liquid Handling
 - Automated Work Stations (Beckman)
 - Assembly of Liquid handlers
 - 96/384 tip heads: BiomekFX, BiomekNX (screening)
 - 1-8 tip head Biomek2000 (concentration curves)

SCREENING PLATFORMS IN CHEMDIV

- Readout
 - Plate readers
 - Tecan M1000 infinite Pro, Tecan M200, VictorV3, VictorV3 light
 - FLIPR Tetra (Molecular Devices)
 - High Content Screening Platform:
 - ImageXpress Micro Widefield High Content Screening System (Molecular Devices)
 - Flow cytometry platform
 - GUAVA EasyCyte Plus

ASSAY FORMATS


DETECTION FORMATS

- Fluorescence, including polarization, FRET, Alpha-screen etc.
- Luminescence
- Absorbance
- High Content Cell imaging
- Flow cytometry

ASSAY FORMATS

- Cells-based assays (FLIPR, LANCE, cytotox etc), including assays with primary cells culture (hepatocytes, PBMC etc)
- Homogeneous (mix and read)
- Heterogeneous (ELISA)

Target to Lead Lead to Candidate Candidate to POC POC to Market

ASSAY TYPES

Biochemical

- > Enzymes
 - √ Kinases
 - ✓ Phosphatases
 - ✓ Proteases etc.
- Protein-Protein interaction
- DNA modifying enzymes
- > other

Cellular

- Receptors
 - ✓ GPCRs
 - ✓ Nuclear
- Reporter assays
 - ✓ Nuclear factors
 - ✓ Splicing
- Cell proliferation and cytotox
- Cytokines expression
- Cell imaging
- Other

SOME TARGETS WE HAVE BEEN WORKING WITH

GPCRs

- Fatty acid receptors (GPR40, GPR119, GPR120, LPAR 1-3)
- o Neuromediator receptors (GPR154, adenosinergic, 5HT 1Á-1F, 5HT-4-7, Muscarinic, cGRP, others)
- Chemokine receptors (CXCRs)
- Peptide hormone receptors
- Protease-activated (PARs)
- Peptide hormone receptors (NPYR 1,2,5)

Kinases (ATP binding and non-ATP binding sites)

 Abl, Akt1-2, BRAF, CDLK1, GSK3B, EGFR, ÉrbB1[L858R], JAK2-3, PI3K, PDK1, IGF1R, VEGFRs, Pim1, PDK1, SGK1-3, others)

Ion channels (ligand- and potential-gated)

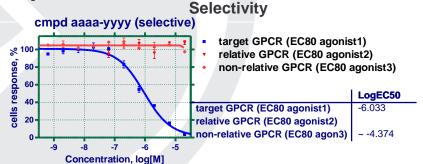
- o TRPA1, 8, nAchR α7
- Na channels, Ca channels

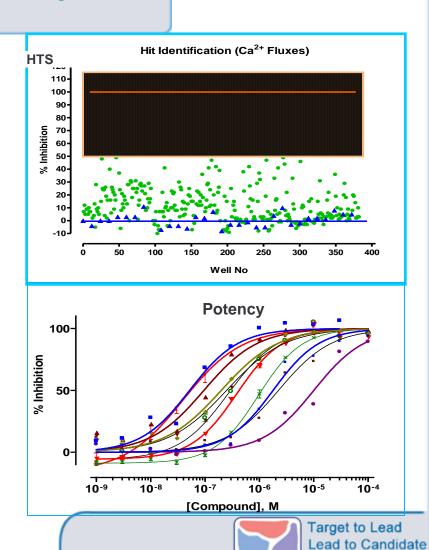
Other targets

- Nucleases: APE1, Exo1, RAD51
- Deacetylases: HDAC1-11, SIRT1,2,6
- Pathways (Hh, WNT, Notch, CMA, Autophagy, Epigenetics)
 Arginase, PAI-1, PD-1/PD-L1 etc.
- Viral polymerases, proteases and others

Cell lines

 Multiple cell lines with endogenously and exogenously expressed receptors




SCREENING FLOW:

Screening/potency/specificity/cytotoxicity

- 1) Assay development and validation
- 2) HTS (single-points or duplicates)
 - Multiple target classes
 - Multiple readout technologies
- 3) Hit confirmation
 - In duplicates from fresh powder
- 4) Potency
 - Typically 10 concentration points in duplicates
- 5) Specificity and Selectivity
- 6) Secondary assays
- 7) Follow up
- 8) H2L optimization

Candidate to POC

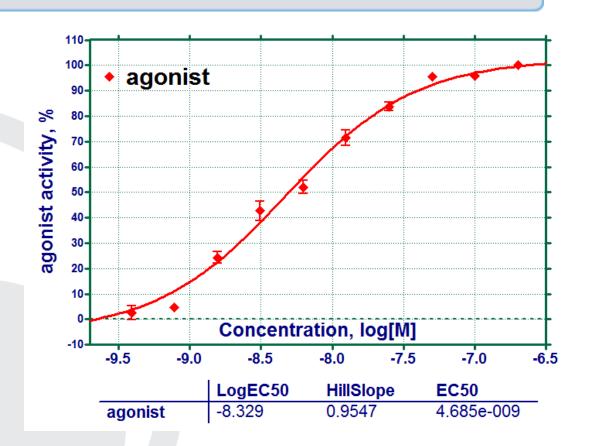
POC to Market

Cell Based Assays Case studies

GPCRs: ASSAY DEVELOPMENT

- Selection of cell line with endogenous xxx expression and Ca²⁺ response to agonist
- Optimization
 - Agonist dose response curve
 - Optimum plate type, cell density and FBS concentration (minimal acceptable concentration), HEPES presence (helpful in some cases)
 - Optimum dye loading conditions: concentration/ T°C/time dependence/probenecid concentration (for cells like CHO)
 - Optimum FLIPR conditions: solutions addition height and speed, mixing parameters
 - DMSO tolerance
 - Reagents stability at RT
- Validation
 - NIH validation protocol
 - Statistics (Z'-factor; S/B; S/N; %CV)
 - Edge and drift effects

GPCRs: SCREENING


- Primary screening
 - Up to 10,000/day compounds at single concentration (typical, at 10μM)
- Secondary screening
 - Confirmation of cmpds which overcame the threshold in duplicate at same concentration
- Determination of EC/IC50
 - Concentration response curves (CRCs) at concentration range (typical, 10 concentration point with dilution step 3.16 from 30 μM to ~1nM)
- Specificity and selectivity determination
 - CRCs as in previous stage on cell lines with target and non-relative (for specificity) or relative (for selectivity) receptors

FLIPR:ASSAY DEVELOPMENT

Chem Div The chemistry of curesSM

agonist activity and concentration selection for antagonist screening

EC80 selected for further assay development

FLIPR: ASSAY DEVELOPMENT

dye loading condition

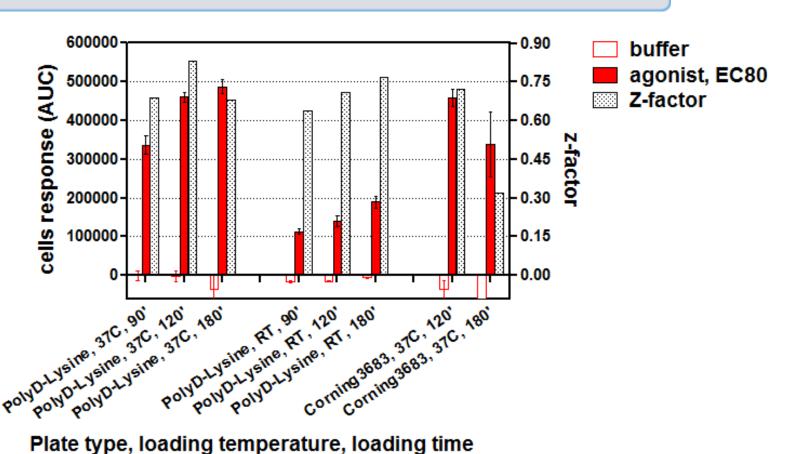
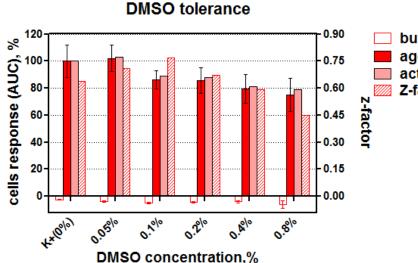


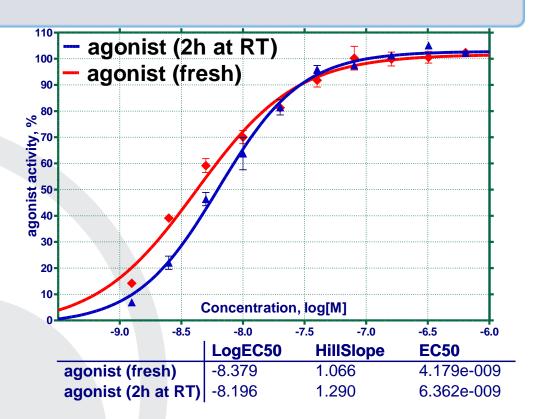
Plate type, loading temperature, loading time


FLIPR:ASSAY DEVELOPMENT

DMSO tolerance and dye concentration

Dye concentration % 0.90 cells response (AUC), buffer 0.75 agonist, EC80 80 0.60 activity (agonist - buffer) 60-0.45 Z-factor 40 0.30 20 0.15 0.00 0.75x 0.6x 0.5x 1x

Dye concentration (comparing MD recommendation)


□ buffer■ agonist, EC80□ activity (agonist - buffer)ℤ Z-factor

FLIPR:ASSAY DEVELOPMENT

agonist stability

 agonist is stable at EC80-EC90 during 2 hours and therefore may be used in HTS in this concentrations.

For IDIP validation 40 nM and 4 nM of agonist could be used as high and medium concentration respectively

SUMMARY OF OPTIMAL ASSAY CONDITIONS

for CHO-xxx Cell Line

St	Conditions checked											
no	Plate type	Corning, CellBind ^R Surface ^R			Poly-D-Lysine CELLCOAT® 384 well black µClear®							
Cell incubation condition	Medium	10%	FBS	5%	FBS	3%	6 FBS	2% F	BS	1% FI	BS	w/o FBS
incu	cell concentration (cells/well)	6.000			8.000		12.000			16.000		
ing	Loading temperature	RT				37 C						
Cell-loading conditions	Loading time	1 hour			1.5 hours		2 hours		3 hours			
Cell-	Probenecid concentration	w/o probenecid		1.25 mM		2.5 mM			4 mM			
ے	Addition height (µI)	24 25		25		26	27		28		30	
FLIPR	Addition speed (µl/sec)	15		20								
8 03	Pipetting	w/o pipetting		J	1 tir		me			2 time		
DM	SO tolerance, %	6.4	3.2		1.6	0.8	0.4	0.2	0.1	0.05	0.0025	0.00125
Acce	eptable conditions			•		Cho	sen opti	mal con	ditions			

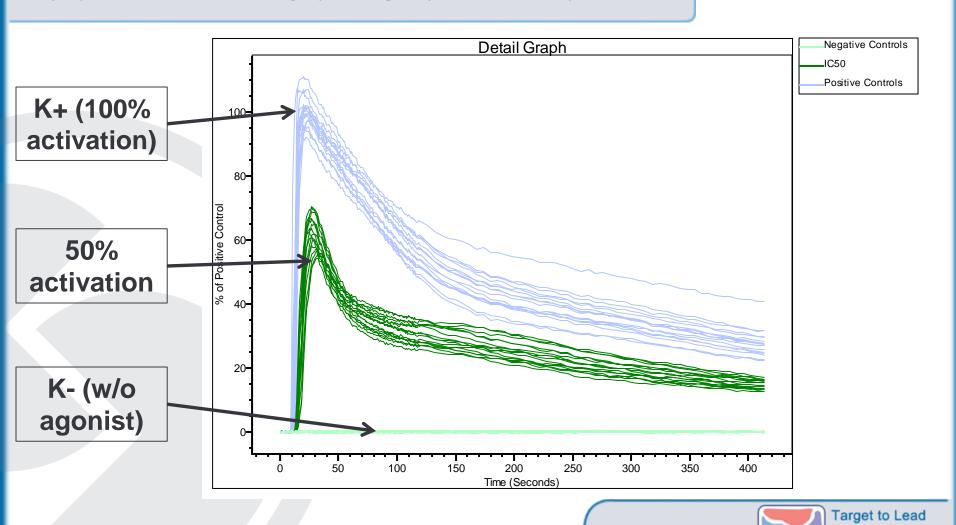
SUMMARY OF OPTIMAL ASSAY CONDITIONS

for HEK293T-xxx Cell Line

81	Steps to check	Conditions checked								
tion n	Plate type	Corr	ning, <u>Ce</u> l	ellBind ^R Surface ^R		Poly-D-Lysine CELLCOAT® 384 well black <u>µClear</u> ®			384 well	
Cell incubation condition	Medium (with and w/o HEPES)	10% FBS	5% FBS	2% FBS with HEPES	2% FBS w/o HEPES	1% FBS with HEPES	1% FBS w/o HEPES	0% FBS with HEPES	0% FBS w/o HEPES	
Sell Cell	cell concentration (cells/well)	10.000		15	15.000		20.000		30.000	
Cell-loading conditions	Loading temperature	RT			37 C					
II-lo	Loading time	1.5 hour		2 ho		ours		3 hours		
ပ္ပ	Dye concentration	1x		0.	75x	0.6x		0.5x		
	Addition height (µI)	35		4	40	4:		5	50	
condition	Addition speed (µl/sec)	10)	12		15		20		
onc	Pipetting	w/o pip	etting		1 time			2 time		
FLIPR o	Pipetting height and volume (µI)	27 (25 µl)		32 (25 µl)		37 (25 µl)		42 (20 µl)		
丘	Pipetting speed (μl/sec)	1		15		2		20		
DMSO tolerance, %		1.6	C	0.8	0.4	0.2	0.1		0.05	
Ac	ceptable conditions	Chosen optimal conditions								

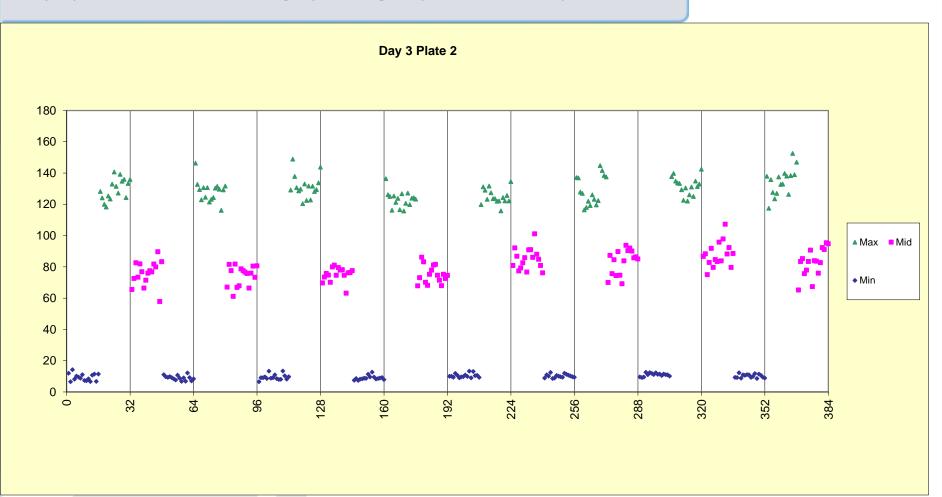
INTRA-PLATE, INTER-PLATE AND INTER-DAY VALIDATION

(3 plates / 2 or 3 days), single plate example



INTRA-PLATE, INTER-PLATE AND INTER-DAY VALIDATION

Lead to Candidate Candidate to POC POC to Market


(3 plates / 2 or 3 days), single plate example

INTRA-PLATE, INTER-PLATE AND INTER-DAY VALIDATION

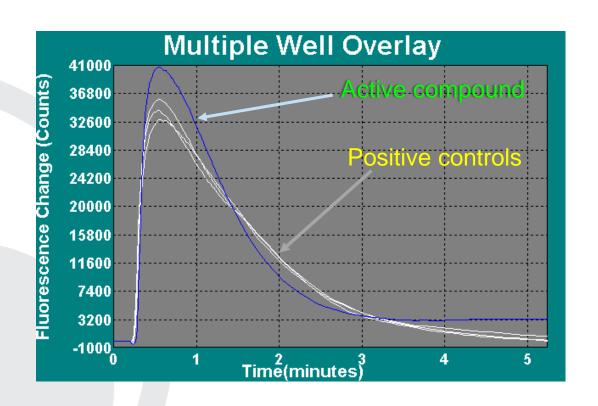
(3 plates / 2 or 3 days), single plate example

VALIDATION TEST CHECKLIST

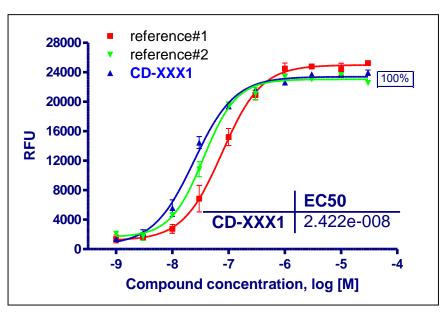
Intra-P	late Tests	Meets Criterion?
1	Check for drift and edge effects in all plates (you must check manually)	
2	All max (HI) signal CV's < 20%	Yes
3	All mid signal (unnormalized) CV's < 20%	Yes
4	All normalized mid signal (mid %) SD's < 20	Yes
5	All min (LO) SD's < Min(max (HI) SD, mid SD)	Yes
6	All SW's >2	Yes
7	All Z' Factors > 0.4 (and < 1; must pass one of 6 or 7)	Yes
Inter-P	late Tests	
1	All within-day fold shifts < 2	Yes
2	All Average (between-)Day fold shifts < 2	Yes

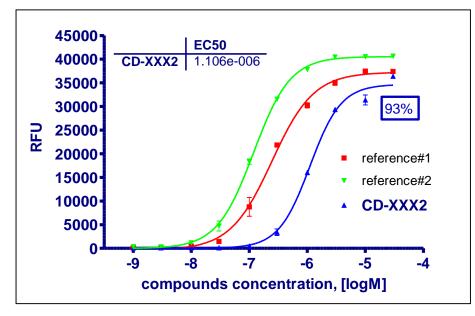
GPCRs GPCR-X Agonists Screening Case Study

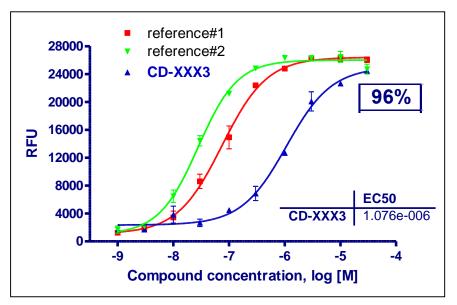
HTS CAMPAIGN (agonist screening)



- Goal: Search for GPCR-X novel agonists
- Assay: Calcium Mobilization Assay (FLIPR platform)
- HTS-1 campaign (diverse library) and HTS-2 campaign (GPCR biased library)
 - Hit Criteria:
 - 1)Agonistic activity more than 50% of positive control
 - 2)Maximal calcium spike at less than 60 sec
- Re-screen at 10µM in duplicates
- Counter screen
 - Naïve CHO cell line
- 127 compounds were confirmed (Hit rate 0.39%)
 - Potency profiling with EC₅₀<10μM</p>
- 3 Series selected for follow-up MedChem campaign


EXAMPLES OF FLIPR CURVES ChemDiv


represent cellular Ca 2+ response to agonists and compounds tested (agonist screening)



Confirmation of Hits (Examples)

 Novel hits from 5 different series were identified

GPCRs GPCR-X Antagonists Screening Case Study

HTS SUMMARY (antagonist screening)

Primary screening

hit criteria: INH% > 50% - 3*SD(reference) and ACT% < 20% + 3*SD(buffer) at 10µM

Rescreening

hit criteria: INH% > 50% - 3*SD(reference) in each replicate and ACT% < 20% + 3*SD(buffer) in each replicate at 10µM

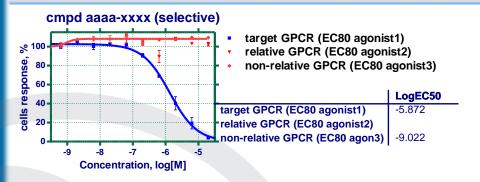
Counterscreening

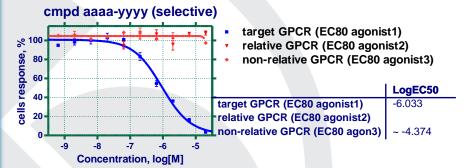
hit criteria: INH% < 10% + 3*SD(non-relative GPCR) at 10μM

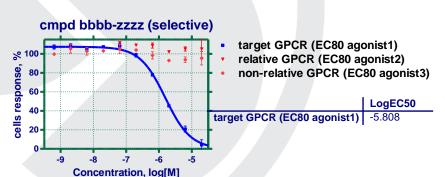
Selectivity panel

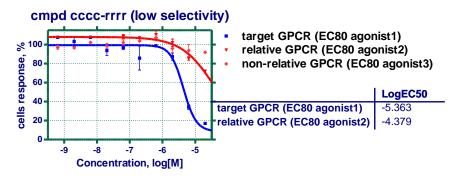
hit criteria: INH%(target GPCR)>50% at 20μM with significant selectivity to relative GPCR and non-relative GPCR

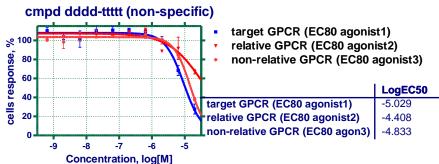
Target GPCR selective hits confirmed

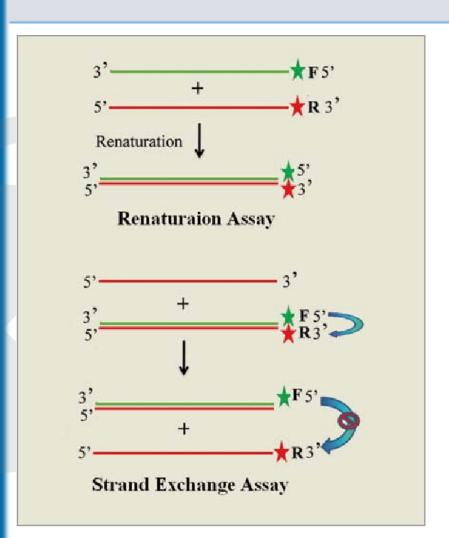





HITS POTENCY PROFILING



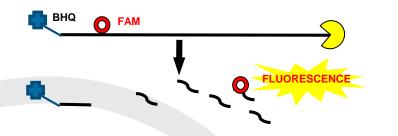

(antagonist screening)

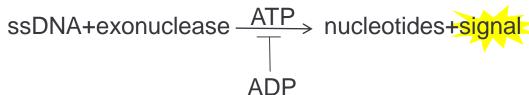


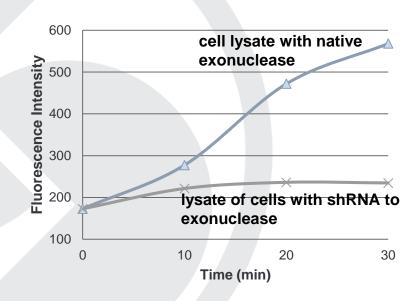
Enzymatic assay Case Study

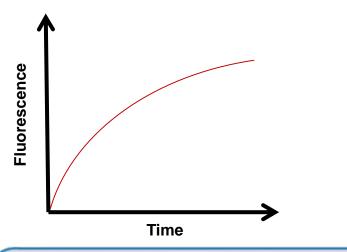
Strand exchange assay successfully used in HTS

Enzymatic DNA repair assays


Schematic representation of renaturation and strand exchange assay monitored by FRET. Fluoresciene (F) and Rhodamine (R) used as a FRET pair in these assays. FRET in case of renaturation as both the dyes are juxtaposed after annealing and loss of FRET in case of strand exchange as F and R were separated as result of strand exchange was monitored.


Also fluorophore-quencher pair may be used in this assay (like FAM-BHQ1)




High throughput approach to measure exonuclease activity

HTS assay validation: plate uniformity and signal variability assessment (one of the assay)

Impact of Midpoint Percent Activity Change on Ratio of EC50/IC50/Ki

Mid	%
dat	a

data					
	Dioto 1	Dioto 2	Plate 3	Day	
	riale i	Flate 2	Flate 3	Ave.	
Day 1	75.61	79.47	78.24	77.77	
Day 2	70.72	74.82	75.00	73.51	

Mid % difference within Days

	Plate 1 -	Plate 1 -	Plate 2 -
	Plate 2		
Day 1	-3.86	-2.63	1.23
Day 2	-4.10	-4.28	-0.18

Mid % difference between Days

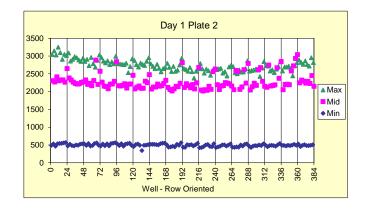
Day 1 -Day 2 4.26

Typical Value for Slope of dose-response curve?

1___

Ratio EC50/IC50/Ki within Days (larger over smaller)

	Plate 1 -	Plate 1 - Plate 3	
Day 1	1.2	1.2	1.1
Day 2	1.2	1.2	1.0


Meets Criterion Meets Criterion

Ratio EC50/IC50/Ki between Days (larger over smaller)

Day 1 -	
Day 2	
1.3	

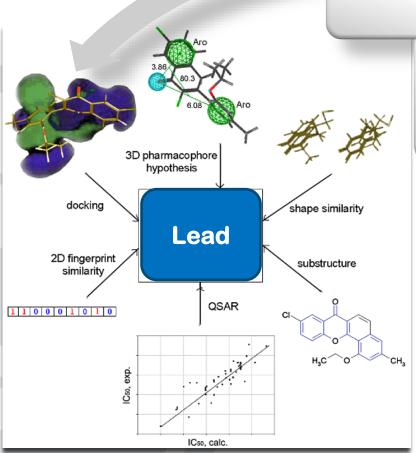
Meets Criterion

Validat	ion Checklist	
Intra-P	late Tests	Meets Criterion ?
1	Check for drift and edge effects in all plates (you must check ma	nually)
2	All max (HI) signal CV's < 20%	Yes
3	All mid signal (unnormalized) CV's < 20%	Yes
4	All normalized mid signal (mid %) SD's < 20	Yes
5	All min (LO) SD's < Min(max (HI) SD, mid SD)	Yes
6	All SW's >2	Yes
7	All Z' Factors > 0.4 (and < 1; must pass one of 6 or 7)	Yes
Inter-P	late Tests	
1	All within-day fold shifts < 2	Yes
2	All Average (between-)Day fold shifts < 2	Yes

ChemDiv

The chemistry of curesSM

Conclusions:


- 1) All assay parameters meets with criteria
- 2) Mean Z-factor in assay validation is 0.73, minimum is 0.67 (should be not less then 0.4)
- 3) No any significant trends effects was observed,
- 4) Some edge effect observed (see example of one of the plate above) but isn't crucial in this case (not exceed 5% of mean value) and anyway Z-factor still significantly higher then acceptable level without excluding of edge wells
- 5) Totally, assay may be used for searching inhibitor in HTS

AFTER FINDING HITS

Quick establishment of Hit Series vs. Singletons

In house synthesis of all selected compounds allows for Quick Hit Clusterization and SAR

Chemistry On Demand [™]
15,000 pre-developed
Chemical Libraries allows for fast Hit explosion synthesis

Fast re-synthesis, scale up Iterative design, and novel chemistry series / IP

FOLLOW UP OPTIONS

- Hit Confirmation, CRCs, hit characterization
 - Hit Material (in desired amount)
 - Hits Re-synthesis, Scale-up synthesis, synthetic protocols
- Specificity/Selectivity profiling
- Mechanism of action determination
- MedChem optimization in H2L program
 - Supply of Analogs (for the same templates) from 1.5M+ library
 - Rapid expansion on identified active templates (focused libraries)
- Preclinical Development
 - Physiochemical profiling
 - Biochemical profiling
 - Cell-based tox profiling
 - DMPK
 - Bioavailability
 - ADME/Tox optimization

Thank You!

